creating better coasts and ports
R1560 Rev 1

September 2021

boat harbours
canals
breakwaters
jetties
seawals
dredging
reclamation
climate change
waves
currents
tides
flood levels
water quality
siltation
erosion
rivers
beaches
estuaries
www.coastsandports.com.au

m p rogers \& associates pl

creating better coasts and ports

Suite 1, 128 Main Street, Osborne Park, WA 6017
p: +61892546600
e: admin@coastsandports.com.au
w: www.coastsandports.com.au

K1570, Report R1560 Rev 1

Record of Document Revisions

| Rev | Purpose of Document | Prepared | Reviewed | Approved | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | Draft for MRA review | M Peterson | T Hunt | T Hunt | 09/07/21 |
| 0 | Issued for Client use | M Peterson | T Hunt | T Hunt | 12/07/21 |
| 1 | Updated with Client comments | M.Refen | | | |

Form 035 18/06/2013

Limitations of this Document

This document has been prepared for use by the Client in accordance with the agreement between the Client and M P Rogers \& Associates Pty Ltd. This agreement includes constraints on the scope, budget and time available for the services. The consulting services and this document have been completed with the degree of skill, care and diligence normally exercised by members of the engineering profession performing services of a similar nature. No other warranty, expressed or implied, is made as to the accuracy of the data and professional advice included. This document has not been prepared for use by parties other than the Client and its consulting advisers. It may not contain sufficient information for the purposes of other parties or for other uses.

M P Rogers \& Associates takes no responsibility for the completeness or form of any subsequent copies of this document. Copying this document without the permission of the Client or M P Rogers \& Associates Pty Ltd is not permitted.

Table of Contents

1. Introduction 1
2. General Assumptions 2
3. Do Nothing (Baseline) Option 3
3.1 Adaptation Costs 3
3.2 Economic Costs 3
3.3 Social \& Environmental Costs 4
4. Seawall Option 6
5. Managed Retreat Option 7
6. Groynes Option 9
7. Headlands Option 11
8. Beach Nourishment Option 13
9. Summary 15
10. References 16
11. Appendices 17

Appendix A Cost Benefit Analyses 18
Appendix B Adaptation Option Sketches 20

Table of Figures

Figure 3.1 Example Use \& Non Use Values for Beaches (Pascoe et al 2017) 4

Table of Tables

Table 1.1 Adaptation Options Considered for each Coastal Node (MRA 2020) 1
Table 3.1 Demolition Rates 3
Table 3.2 Social \& Environmental Benefits 5
Table 5.1 Asset Rebuild Rates 7
Table 6.1 Groyne Initial Sand Nourishment Volumes 9
$\begin{array}{lll}\text { Table 8.1 Beach Nourishment Initial Volumes } & 13\end{array}$
Table 9.1 Ranked Adaptation Options 15

1. Introduction

To assess the risk to its assets and plan for the future, the City of Joondalup (City) is undertaking the Coastal Hazard Risk Management and Adaptation Planning (CHRMAP) process in line with the recommendation of the State Coastal Planning Policy (SPP2.6, WAPC 2013). The City have engaged specialist coast and port engineers M P Rogers and Associates Pty Ltd (MRA) to assist with the CHRMAP process.

As part of the CHRMAP process, the validity of adaptation options determined using a multi criteria analysis are assessed using a cost benefit analysis (CBA). This report outlines the assumptions, methods and results of the CBA conducted as part of the City's CHRMAP. Further information and context is provided in the overarching City of Joondalup Coastal Hazard Risk Management \& Adaptation Plan report (MRA 2020).

Separate CBA's have been completed for each of the City's identified coastal nodes. The adaptation options considered for each of the coastal nodes are presented in Table 1.1. The selection of the adaptation options was completed through the use of a Multi Criteria Assessment as part of the City's CHRMAP (MRA 2020).

Table 1.1 Adaptation Options Considered for each Coastal Node (MRA 2020)

Coastal Node	Name	Do Nothing	Seawall	Managed Retreat	Groynes	Headlands	Beach Nourishment
1	Marmion	\checkmark	\checkmark	\checkmark			
2	Sorrento	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
3	Hillarys to Pinnaroo Point	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
4	Mullaloo	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5	Ocean Reef	\checkmark					
6	Iluka	\checkmark		\checkmark			\checkmark
7	Burns Beach	\checkmark		\checkmark			

2. General Assumptions

This cost benefit analysis assumes that the coastal erosion hazard lines are realised. It is important to note that this would require a number of factors to occur and that there is a likelihood associated with each of these factors. There are a number of complexities and assumptions associated with the analysis, as outlined herein, and the future costs (especially social and environmental) are relatively uncertain and subject to change.

The costs determined in this analysis have been determined for the City's assets only. The effects of the coastal hazards on private and commercial property and assets have been excluded from the analysis. As such the direct cost to the City has been determined.

It should be noted that there will likely also be a significant cost to private land and infrastructure which has not been considered within this analysis. While this may not cause a direct cost to the City it will likely still have a social and economic cost upon the City.

This analysis serves to outline the high level costs and benefits associated with several potential adaptation options that have been developed at a very early concept level. There are various recommendations regarding appropriate discount rates for local governments, including: https://www.aph.gov.au/About Parliament/Parliamentary Departments/Parliamentary Library/Flag Post/2018/October/Discount-rates. All of the costs presented in the analysis are un-escalated over the 100 year planning timeframe. As such, a discount rate of 3% has been adopted. The present value calculations are extremely sensitive to this rate, given the long timeframe being considered. A sensitivity analysis can be completed or cumulative cashflow can be presented rather than Net Present Values (NPV).

Using the costs and benefits across the 100 year planning horizon, a cost benefit ratio was determined for each of the options. These cost benefit ratios have then been used to rank the adaptation options for each of the City's coastal nodes. The Cost Benefit Analyses for each Coastal Node are included in Appendix A.

3. Do Nothing (Baseline) Option

The Do Nothing Option involves allowing the shoreline to recede naturally and doing the bare minimum in terms of mitigation throughout the 100 year planning horizon.

3.1 Adaptation Costs

Given that the erosion of the relevant assets into the ocean is unlikely to be accepted, a cost for the demolition of these assets has been included. The following demolition rates have been adopted:

Table 3.1 Demolition Rates

Asset Type	Demolition Rate (\$/Unit)	Demolition Unit	Justification
Foreshore Facilities	10	m	
Path	20	m	RBB (2018): \$9/m2, 2 m wide path $=\$ 18 / \mathrm{m} \times 1.15$ (to include preliminaries) $=\$ 20.7 / \mathrm{m}$
Beach Access Way	20	Item	$\begin{gathered} \text { RBB (2018): } \$ 9 / \mathrm{m} 2 \text { path } \times 15 \mathrm{~m} 2+\$ 25 / \mathrm{m} 2 \text { stairs } \times \\ 5 \mathrm{~m} 2=\text { total } \times 1.15=\$ 299 \end{gathered}$
Fencing	20	m	
Landscaped Park	10	m2	RBB (2018): $\$ 7 / \mathrm{m} 2 \times 1.15=\$ 8.05 / \mathrm{m} 2$ for vegetation, allow more with assets
Carpark	10	m2	RBB (2018): \$9/m2 $1.15=\$ 10.35 / \mathrm{m} 2$
Single storey buildings, toilet, changerooms etc	60	m2	RBB (2018): \$35-50/m2 $1.15=\$ 40.25-57.5 / \mathrm{m} 2$
Major Road	200	m	RBB (2018): \$9/m2, 12 m wide path $=\$ 108 / \mathrm{m} \mathrm{x}$ $1.15=\$ 124.2 / \mathrm{m}$. Allow for services as well.
Minor Road	100	m	RBB (2018): $\$ 9 / \mathrm{m} 2,6 \mathrm{~m}$ wide path $=\$ 54 / \mathrm{m} \times 1.15$ $=\$ 62.1 / \mathrm{m}$. Allow for services as well.

Note 1: Rates primarily taken from Ralph Beattie Boseman Compendium (RBB 2018)
The demolition rates provided in Table 3.1 above have been used uniformly for all of the adaptation options and across all timeframes. The demolition costs are calculated for the 2020, 2065 and 2115 timeframes, based on the quantities impacted tabled in the CHRMAP Risk Assessment (MRA 2020) and the demolition rates provided in Table 3.1. These demolition costs are then included in the cost benefit analysis as part of the adaptation costs.

3.2 Economic Costs

In addition to the adaptation cost there is also an economic cost associated with the loss of assets. The economic costs of losing assets were calculated for each of the relevant timeframes, based on the potential costs in the CHRMAP Risk Assessment (MRA 2020). These potential
costs were determined using the City's asset book data and other available costing guidelines as discussed in the CHRMAP report (MRA 2020). The total economic costs were included in the analysis under economic cost, for each of the relevant timeframes.

3.3 Social \& Environmental Costs

There is a social and environmental cost associated with the loss of vegetation and foreshore park area. These have been quantified based on available literature, including an economic study in New South Wales to determine such values for the purposes of cost benefit analyses (Pascoe et al 2017). There is also a social and environmental benefit associated with the direct and nondirect use of the available beach and surrounding reserve areas. These have also been quantified by Pascoe et al (2017).

The study outlines use (direct and indirect) and non-use (existence and bequest) economic values for similar cost benefit analyses within the Sydney region, extracts of which are shown in Figure 3.1.

Table 4. Examples of use values for a range of beaches					

Table 3. Derived non-use values per hectare in a range of NSW coastal regions								
(\$m/ha)				\quad				
:---	---:	---:	---:					
	Sydney coastal regions							
	Waverly	Manly	Warringah					
Households	32,300	18,050	58,300					
Sandy Beach	$\$ 1.44$	$\$ 0.81$	$\$ 2.60$					
Headland	$\$ 1.15$	$\$ 0.64$	$\$ 2.07$					
Rocky shoreline	$\$ 0.68$	$\$ 0.38$	$\$ 1.24$					
Dunes	$\$ 1.01$	$\$ 0.56$	$\$ 1.82$					
Adjacent Scrubland	$\$ 0.82$	$\$ 0.46$	$\$ 1.48$					
Freshwater Lakes	$\$ 1.12$	$\$ 0.63$	$\$ 2.02$					
Estuary	$\$ 0.67$	$\$ 0.38$	$\$ 1.22$					
Saltmarsh	$\$ 0.52$	$\$ 0.29$	$\$ 0.93$					
Mangroves	$\$ 0.76$	$\$ 0.43$	$\$ 1.38$					
Seagrass	$\$ 1.08$	$\$ 0.61$	$\$ 1.96$					
Reefs	$\$ 0.80$	$\$ 0.45$	$\$ 1.45$					
Sandy Seabed	$\$ 1.16$	$\$ 0.65$	$\$ 2.09$					
	Non-Sydney Coastal LGAs							
	Eurobodalla	Byron	Coffs					

Figure 3.1 Example Use \& Non Use Values for Beaches (Pascoe et al 2017)

3.3.1 Use Values

In 2018 the City conducted a survey of coastal usage (CoJ 2018). It has been assumed that the 2,158 surveyed people are representative of 50% of the City's population. This is likely an overestimation, however it allows for a surplus to account for outside visitors as well.

The majority (63.8\%) of respondents visit the coast multiple times per week or at least once per week throughout the year. As such an average of one visit per week per person has been assumed. Respondents also listed their most visited beach, with respondents able to select more than one option. The information was then used to estimate the percentage of overall beach visits which occur at each of the coastal nodes.

An estimate of the annual visitors to each coastal node was then determined and when multiplied by the expected average economic benefits of each visit ($\sim \$ 7.60$) gives the total social and
environmental benefit for each coastal node per 5 year period. The economic benefit for each node is listed in Table 3.2.

Table 3.2 Social \& Environmental Benefits

Coastal Node	\% of Beach Visits	Economic Benefit / Period
1	1.2	$\$ 405,080$
2	46.9	$\$ 15,808,000$
3	57.1	$\$ 19,760,000$
4	24.8	$\$ 21,143,200$
5	28.3	$\$ 8,556,080$
6	32.9	$\$ 9,544,080$
7		$\$ 11,065,600$

A population growth rate of 0.5% per period has been assumed as a conservative estimate for the City based on the recommendations of https://forecast.id.com.au/joondalup/population-summary. Significant decreases have been assumed for some nodes when beach carparking has to be removed due to erosion, or beach areas are entirely lost due to erosion.

3.3.2 Non Use Values

The number of households in the City $(60,346$ (ABS 2016)) is similar to the number of households in the Warringah area of NSW $(58,300)$. Therefore, it has been assumed that the non-use value for a sandy beach in the Warringah area is appropriate for use in the City. As such a sandy beach non-use value of $\$ 260 / \mathrm{m}^{2}$ has been adopted from Pascoe et al (2017). Using the same method a non-use value of $\$ 180 / \mathrm{m}^{2}$ has been adopted for dunes (including vegetation) and a non-use value of $\$ 260 / \mathrm{m}^{2}$ for foreshore reserve areas given their proximity to the beach (Pascoe et al 2017).

The social and environmental costs included in the CBA were determined using the rates discussed above and the affected areas determined in the CHRMAP risk assessment (MRA 2020). It has been assumed that the beach will retreat maintaining its current size through each of the timeframes, unless there is something that will prevent the beach from retreating (eg seawall, rocky cliff, etc). These values were included in the CBA in the social and environmental costs column for the relevant timeframes.

4. Seawall Option

This option involves constructing seawalls to protect major infrastructure (roads, carparks and buildings) as per the Multi Criteria Analysis recommendation for further investigation and shown in the sketches provided in Appendix B.

The adaptation capital cost for this option is based on the estimated lengths of seawall constructed and rates from several recently completed projects within the Perth Metropolitan region. In addition seawall maintenance costs equal to 1% of the initial capital costs were included each year for lengths of seawall constructed by the relevant year. This is based on MRA's experience with design, construction and maintenance of rock structures in the Perth Metropolitan Coast and the recommendations of the Port Designers Handbook: Recommendations and Guidelines (Thorensen C A 2003). These maintenance costs were tabled as adaptation maintenance costs in the CBA.

All capital costs for the seawalls were input into CBA's at the timeframe for which relevant sections of the seawalls are required, based on the coastal erosion hazard lines. The replacement of the seawalls was assumed at the end of a 50 year design life based on MRA experience with rubble mound structures. At the end of design life, replacement costs were assumed to equal approximately 50% of the initial capital cost, as it is assumed a portion of the rock can be re-used.

There is also an adaptation cost associated with demolishing the minor assets not protected by the seawalls (pathways, beach access ways etc). These have been calculated using the rates discussed in Section 3 and quantities determined based on the quantities tabled in the risk assessment and the proposed seawall placement. These costs are also included in the adaptation capital cost in current year for the relevant time frames.

There is an also an economic cost associated with the loss of these assets. These costs have been calculated for the relevant timeframes based on the potential costs tabled in the CHRMAP Risk Assessment and the quantities determined previously.

There is a social and environmental cost associated with the loss of dunes and foreshore park areas not protected by seawalls as well as the beach areas that would be lost if the shoreline retreats to the seawalls. These costs were determined using the rates outlined in Section 3 and the quantities determined previously.

The social and environmental benefit was calculated using the same procedure outlined in Section 3.

5. Managed Retreat Option

This option involves retreating assets to an appropriate and nearby location behind the relevant hazard lines. The adaptation cost of this option is based on the demolition (or temporary removal if possible) of the assets within the hazard lines, acquisition of land at a nearby location and reconstruction (or relocation if possible) of the assets. It is noted that this cost could be reduced if managed retreat can be timed with the end of the service lives of the relevant assets.

Two versions of the managed retreat option have been presented within the CBA, one considering only the City's (Public) assets and the other including an allowance to purchase private property immediately prior to its loss due to erosion (eg residences, commercial properties, etc).

The demolition costs are based on the rates discussed in Section 3 and the rates to acquire foreshore land and rebuild the relevant assets are displayed in Table 5.1. The costs to purchase private property were taken from the potential costs determined as part of the CHRMAP risk assessment (MRA 2020).

Table 5.1 Asset Rebuild Rates

Asset Type	Rate (\$/Unit)	Unit	Justification
Acquiring land	Rates vary (Generally around $\$ 2,000$)	m2	Based on the average cost of undeveloped foreshore land in each coastal node determined from realestate.com.
Path	\$250	m	RBB (2018) \$208/m x 1.15 (to include preliminaries) $=\$ 239.2 / \mathrm{m}$
Beach Access Way	\$250	m	Assumed similar cost to Path.
Foreshore Facilities	\$25	m	City book value \$20/m increased by 25%
Fencing	\$50	m	RBB (2018) $\$ 40 / \mathrm{m} \times 1.15=\$ 46 / \mathrm{m}$
Landscaped Park	\$60	m2	City book value $\$ 50 / \mathrm{m} 2$ increased by 20%
Carpark	\$120	m2	$\begin{gathered} \text { RBB }(2018) \$ 85-\$ 100 / \mathrm{m} 2 \times 1.15=\$ 97.75- \\ \$ 115 / \mathrm{m} 2 \end{gathered}$
Single storey buildings, (toilet, changerooms etc)	\$2,000	m2	RBB (2018) social or sporting club \$2,3002,800/m2
Major Road	\$5,000	m	Department of Infrastructure and Regional Development. $\$ 5 \mathrm{mil} / \mathrm{km}$ construction value.
Minor Road	\$3,800	m	Department of Infrastructure and Regional Development. $\$ 3.8 \mathrm{mil} / \mathrm{km}$ construction value.

As all of the assets are maintained (although at a more landward location) there will be no economic cost due to the loss of assets. As such there is no input for economic cost into the CBA for this adaptation option.

As part of the managed retreat, equivalent foreshore reserve and beach areas will be provided, therefore there is no input into the CBA for these items. However, dune areas will still be lost due to erosion and as such the social and environmental costs for the loss of these areas was included in the CBA. These values were determined using the rates and areas outlined in Section 3.

The social and environmental benefit was calculated using the same procedure outlined in Section 3. As carparking and beach is present throughout the 100 year timeframe (although at a retreated location) there is no significant decrease applied.

6. Groynes Option

This option involves constructing groynes to protect all areas of the relevant coastal nodes as determined by the Multi Criteria Analysis. High level concepts of the groynes and accompanying sand nourishment were prepared for each of the relevant Coastal Nodes and used to determine approximate construction costs. Sketches of groyne concepts are included in Appendix B.

It has been assumed that the construction of the groynes will provide protection against the longshore sediment movement, cross shore movement and partial protection against sea level rise (SLR) based on MRA experience with rubble mound structures. As such the coastal erosion hazard allowance for this option has been taken as half of the SLR allowance. It has also been assumed that the additional protection provided by the groynes and sand nourishment would allow any existing seawall's or rocky cliffs to successfully prevent erosion over the 100 year planning horizon.

The adaptation capital cost of this option is based on the estimated lengths of groyne constructed in each time period and rates from several recently completed projects within the Perth Metropolitan region. The replacement of the groynes is also assumed at the end of a 50 year design life. In addition, groyne maintenance costs equal to 1% of the initial capital costs were included each year for lengths of groyne constructed by the relevant year as discussed in Section 4. These maintenance costs were tabled as adaptation maintenance costs in the CBA.

The construction costs for each groyne included an allowance for sand nourishment using a rate of $\$ 60 / \mathrm{m}^{3}$ of sand. Initial sand nourishment volumes for each of the relevant Coastal Nodes are displayed in Table 6.1. These nourishment volumes were determined by assuming the placement of a triangular one metre high wedge of sand extending between groynes when each groyne is built. The allowance for sand nourishment increases throughout the 100 year timeframe as an allowance for sea level rise is included in each consecutive time period.

Table 6.1 Groyne Initial Sand Nourishment Volumes

Coastal Node	Initial Nourishment Volume $\left(\mathrm{m}^{3}\right)$
2	9,000
3	12,000
4	15,000

At the end of the groynes design life it has been assumed that they are replaced costing approximately 50% of the initial construction costs, as it is assumed a portion of the rock can be re-used. In addition it is assumed that they are moved approximately 20 m landward due to recession of the coastline.

There is also an adaptation cost associated with demolishing the assets that fall within the reduced coastal erosion hazard allowances, including beach access ways, coastal path etc. These have been calculated using the rates discussed in Section 3 and are included in the adaptation capital cost for the relevant timeframes.

It has been assumed that the groyne timing will be adjusted to protect all major assets before they are lost to erosion and with sufficient buffer against the reduced coastal erosion hazard
m p rogers \& associates pl City of Joondalup, CHRMAP Cost Benefit Analysis Technical Summary K1570, Report R1560 Rev 1, Page 9
allowances. The exceptions are assets (Foreshore Facilities, Beach Access Ways, Fencing and Coastal Path) which are already at risk from the reduced coastal erosion hazard allowances and all assets affected by the present day scenario.

There is an economic cost associated with the loss of the assets not protected by the groynes/affected by the reduced coastal erosion hazard. These have been calculated for the relevant timeframes, based on the potential costs in the CHRMAP Risk Assessment and the quantities determined previously.

There is a social and environmental cost associated with the loss of beach, dune and foreshore park as part of both the groyne construction and erosion over the 100 year timeframe. When the groynes are constructed an area of the beach and dunes will be lost and this has been included in the CBA at the relevant timeframes. There is also a social and environmental cost associated with the loss of dune and foreshore park areas due to the reduced coastal erosion hazard. These costs were determined using the rates discussed in Section 3 and areas determined from the reduced coastal erosion hazard allowances.

The social and environmental benefit was calculated using the same procedure outlined in Section 3. As carparking and beach is present throughout the 100 year timeframe there is no significant decrease applied.

7. Headlands Option

This option involves constructing Headlands (Offshore Breakwaters) to protect all areas of the relevant coastal nodes. High level concepts of the headlands and the accompanying sand nourishment were prepared for each of the relevant coastal nodes and used to determine approximate construction costs. The headlands have been assumed to be 100 m long, 21.5 m wide and 5.5 m tall with a crest level of 2.5 mAHD . These dimensions are based on calculations completed by MRA and MRA's experience with rubble mound structures. Sketches of the headland concepts are provided in Appendix B.

Similar to the groynes discussed in Section 6, it has been assumed that the construction of the headlands will provide protection against the longshore sediment movement, cross shore movement and partial protection against SLR. As such the coastal erosion hazard allowance for this adaptation option has been taken as half of the SLR allowance. It has also been assumed that the additional protection provided by the headlands and sand nourishment would allow any existing seawall's or rocky cliffs to successfully prevent erosion over the 100 year planning horizon.

The adaptation capital costs of this option are based on the estimated lengths of headland built in each timeframe along with rates from several recently completed projects within the Perth Metropolitan region. The replacement of the headlands has also been assumed at the end of a 50 year design life. In addition, headland maintenance costs equal to 1% of the initial capital costs were included each year for lengths of headland constructed by the relevant year as discussed in Section 4. These maintenance costs were tabled as adaptation maintenance cost in the CBA.

The construction costs for each groyne included an allowance for sand nourishment using a rate of $\$ 60 / \mathrm{m}^{3}$ of sand. An initial sand nourishment volume of $3,200 \mathrm{~m}^{3}$ was used for each of the relevant coastal nodes. These nourishment volumes were determined by assuming the placement of a triangular two metre high salient of sand behind each headland. The assumed salient dimensions are $80 \times 40 \times 2 \mathrm{~m}$. The allowance for this sand nourishment increases throughout the 100 year timeframe as an allowance for sea level rise is included in each consecutive time period.

At the end of the headlands design life, it has been assumed that they are replaced costing approximately 50% of the initial construction costs, as it is assumed a portion of the rock can be re-used. In addition, it is assumed that they are moved approximately 20 m landward due to recession of the coastline.

There is also an adaptation cost associated with demolishing the assets that fall within the reduced coastal erosion hazard allowances, including beach access ways, coastal path etc. These have been calculated using the rates discussed in Section 3 and are included in the adaptation capital cost for the relevant timeframes in the CBA.

It has been assumed that the headland timing will be adjusted to protect all major assets before they are lost to erosion and with sufficient buffer against the reduced coastal erosion hazard allowances. The exceptions are assets (Foreshore Facilities, Beach Access Ways, Fencing and Coastal Path) which are already at risk from the reduced coastal erosion hazard allowances and all assets affected by the present-day scenario.

There is an economic cost associated with the loss of the assets not protected by the headlands/affected by the reduced coastal erosion hazard. These have been calculated for the
relevant timeframes, based on the potential costs in the CHRMAP Risk Assessment and the quantities determined previously.

There is a social and environmental cost associated with the loss of dune and foreshore park areas due to the reduced coastal erosion hazard. This was determined using the rates determined in Section 3 and areas determined from the reduced coastal erosion hazard allowances.

The social and environmental benefit was calculated using the same procedure outlined in Section 3. As carparking and beach is present throughout the 100 year timeframe there is no significant decrease applied.

8. Beach Nourishment Option

This option involves nourishing the existing beaches with sand to allow for their continued usage throughout the 100 year planning horizon. The adaptation cost of this option is based on the volume of beach nourishment completed in each time period. The assumed initial nourishment volumes for each of the relevant nodes are presented in Table 8.1.

Table 8.1 Beach Nourishment Initial Volumes

Coastal Node	Initial Nourishment Volume $\left(\mathrm{m}^{3}\right)$
1	3,500
3	60,000
4	114,600
6	15,200

For Nodes 1 and 3 the initial nourishment volumes were determined from analysis of the shoreline movement and the resulting predicted annual loss of sediment for these areas. As Nodes 4 and 6 are currently accreting, the initial nourishment volumes were estimated as $1 \mathrm{~m}^{3}$ of sediment per m^{2} of beach area. It has been assumed that nourishment will offset any longshore transport, severe storm erosion and 50% of the predicted SLR. As such the coastal erosion hazard allowance for this option has been taken as half of the SLR allowance. It has also been assumed that the additional protection provided by the sand nourishment would allow any existing seawalls or rocky cliffs to successfully prevent erosion over the 100 year planning horizon.

There are several possible sources of sand for the beach nourishment including terrestrial, offshore (via dredging) and sand back passing. The terrestrial source is usually cheapest and a rate of $\$ 60 / \mathrm{m} 3$ has been assumed as a conservative minimum. As such the adaptation costs for this option were determined using the volumes and rate discussed above.

There is also an adaptation cost associated with demolishing any assets that fall within the reduced coastal erosion hazard allowances, including beach access ways, coastal path etc. These have been calculated using the rates discussed in Section 3 and are included in the adaptation capital cost for the relevant timeframes in the CBA.

A maintenance cost of 1% of the initial capital costs of nourishment per year was assumed based on MRA experience with beach nourishment projects in the Perth Metropolitan Coast. This maintenance cost will allow for the rearranging / movement of the sand along with the removal of any dangerous scarps which may form due to erosion.

It has been assumed that the nourishment placement and / or volume will be adjusted by the City to protect major assets.

There is an economic cost associated with the loss of the assets not protected by the sand nourishment / affected by the reduced coastal erosion hazard. These costs have been calculated for the relevant timeframes, based on the potential costs in the CHRMAP Risk Assessment and the quantities determined previously.

There is a social and environmental cost associated with the loss of dune and foreshore park areas due to the reduced coastal erosion hazard. This was determined using the rates determined in Section 3 and areas determined from the reduced coastal erosion hazard allowances.

The social and environmental benefit was calculated using the same procedure outlined in Section 3. As carparking and beach is present throughout the 100 year timeframe there is no significant decrease applied.

9. Summary

As part of the City's CHRMAP process MRA was engaged to conduct a CBA of the various adaptation options for each of the City's identified coastal nodes. The adaptation, economic and social and environmental costs of each option were assessed and compared to the predicted social and environmental benefits. Using these overall costs and benefits a cost benefit ratio across the entire 100 year planning horizon was determined and used to rank the adaptation options for each coastal node. The ranked adaptation options are presented in Table 10.1.

Table 9.1 Ranked Adaptation Options

Rank	Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7
1	Beach Nourishment	Groynes	Groynes	Groynes	Do Nothing	Beach Nourishment	Retreat (Public Only)
2	Retreat (Public Only)	Retreat (Public Only)	Beach Nourishme nt	Offshore Headlands		Retreat (Public Only)	Retreat (Including Private)
3	Retreat (Including Private)	Offshore Headland s	Seawalls	Beach Nourishme nt			
4	Seawalls	Retreat (Including Private)	Offshore Headlands	Retreat (Public Only)			
5		Seawalls	Retreat (Public Only)	Seawalls			
6			Retreat (Including Private)	Retreat (Including Private)			
7							

This ranking of the adaptation options for each node considers only the cost benefit ratio and as such the consideration of various other factors (including but not limited to; public perception, community values, ease of application and the City's goals / desired outcomes) will be needed when determining the final ranking.

10.References

City of Joondalup 2018. Community Engagement Outcomes Report Coastal Survey. Joondalup, Western Australia.

M P Rogers \& Associates 2020. City of Joondalup Coastal Hazard Risk Management \& Adaptation Plan. Draft F. Prepared for the City of Joondalup, Perth, Western Australia

Pasoce S, Doshi A, Kovac M, Austin A 2017. What's my beach worth? Economic values of NSW coastal assets. Prepared for the NSW Office of Environment and Heritage, Sydney, New South Wales.

Ralph Beattie Bosworth 2018. Compendium 2018. Perth, Western Australia.
Thoresen C A 2003. Port Designers Handbook: Recommendations and Guidelines. Thomas Telford Books, London, England.

WAPC 2013. State Planning Policy 2.6 State Coastal Planning Policy. Perth, Western Australia

11.Appendices

Appendix A Cost Benefit Analyses
Appendix B Adaptation Option Sketches

Appendix A Cost Benefit Analyses

	Baseline - Do Nothing						Protect - Seawalls									Planned / Managed Retreat (Public Only)					
	Innuts			Discount Rate $3 \% \quad 3 \%$			Inputs						Discount Rate $3 \% \quad 3 \%$			Inputs			Discount Rate 3\%		
Year			$\begin{gathered} \text { Social \& } \\ \text { Environmental } \\ \text { Benefitin } \\ \text { Current Year } \\ \text { (Nominal) } \end{gathered}$	Cumulative (Nomindal	Cost Present Value (Real)	Benefit Present Value (Real)	Seawall Length (m)	Adaptation Capital Cost in Current Year (Nominal)		Economic Cost in Current Year (Nominal)		$\begin{gathered} \text { Social \& } \\ \text { Environenental } \\ \text { Benefitin } \\ \text { Curren YYar } \\ \text { (Nominal) } \end{gathered}$	Cumulative Cashflow (Nomindal)	Cost Present Value (Real)	Benefit Present Value (Real)	Adaptation Cost in Current Year (Nominal)	Social \& Environmental Cost in Current Year (Nominal)		Cumulative Cashfow (Nomindal)	Cost Presen Value (Real)	Benefit Present Value (Real)
2020	(5300) (56,00)	(5570,240)	5405,080	(1971,460)	(5576,540)	\$405,080	100	(5300)	(936,000)	(56,00)	(5570,240)	\$405,080	(\$207,460)	(5612,540)	\$405,080	(55,30)	(5570,24)	\$405,080	(1970,460)	(5575,540)	5405,080
2025			\$407,105	S235,645		\$351,173	185	(\$1,332,00)	(536,000)			\$407,105	(85,168,355)	(51,180,049)	\$351,173			\$407,105	S236,645		S351,173
2030			\$409,141	S64,786		\$304,439			(566,60)			S409,141	(8825,844)	(549,557)	\$304,439			\$409,141	S645,786		439
2035			5411,187	\$1,05,973		\$263,925			(566,600)			\$411,187	(5481,227)	(542,748)	\$263,925			\$411,187	\$1,05,973		\$263,925
2040			\$41,19	\$1,09,092		\$22,766			(566.600)			541,119	(5506,708)	(536,875)	922,766			S41,119	\$1,08,092		S22,766
2045			541,324	\$1,13,416		\$19,737			(566,600)			541,324	(553, 1,84)	(53, 809)	\$19,737			\$41,324	\$1,13,446		\$19,737
2050			\$41,531	\$1,17,947		\$17,110			(566,600)			541,531	(5557,053)	(527,438)	\$17,110			\$41,531	\$1,180,947		\$17,110
2055			541,739	\$1,22, 685		\$14,833			(566,600)			541,739	(558,9,915)	(523,669)	\$14,833			\$41,739	\$1,22, 885		\$14,833
2060			S41,947	\$1,263,633		\$12,859			(566,600)			S41,947	(5600,567)	(520,417)	\$12,859			${ }^{541,947}$	\$1,264,633		\$12,859
2065		(32.57,000)	\$42,157	(81,27, 211)	(5681,194)	\$11,148			(566,600)		(32.57,000)	542,157	(53,20, 011)	(5698,806)	\$11,148		(52.576 .000)	\$42,157	(81,26, 211)	(5681, 194)	\$11,48
2070			\$42,368	(81,27, 843)		59,664			(566,600)			\$42,368	(53,23, 243)	(\$15,192)	59,64			\$42,368	(81,226,433)		\$9,664
2075			\$42,580	(81,185,263)		58,378		(8666,000)	(566,600)			\$42,580	($53,92,263)$	(\$144,152)	58,378			\$42,580	(81,184,263)		s8,378
2080			542,792	(81,142,471)		\$7,263			$(566,600)$			542,792	(53,94, 0 ,71)	(\$11,304)	57,263			S42,792	(81, 141,471)		\$7,263
2085			\$43,006	(81,09, 464)		56,297			(566.600)			543,006	(53,96,664)	(99,751)	56,297			\$43,006	(81,08,464)		56,297
2090			\$43,221	(81,05, 243)		55,459			(566,600)			\$43,221	(53,99, 043)	(58,411)	55,459			\$43,221	(81,05, 243)		\$5,459
2095			543,438	(81,002,805)		54,732			(566,600)			543,438	(54,015,205)	(87,256)	54,732			\$43,438	(81,01, 8 ,05)		54,732
2100			\$43,655	(9969, 150)		54,103			(566,600)			\$43,655	(54,03, 150$)$	(56,259)	54,103			\$43,655	(5968,150)		54,103
2105			\$43,873	(9925,277)		53,557			(566,600)			543,873	($54,060,877)$	(55,399)	53,57			\$43,873	(9924,277)		s,557
2110			\$44,092	(5881,185)		53,083			(566.600)			544,092	($54,08,385$)	(49,657)	${ }_{53,08}$			544,092	(9880,185)		${ }_{\text {53,083 }}$
2115	(588,54) (8880,920$)$	(5720,000)	S44,313	(52,53,332)	(\$102,512)	\$2,673		(560,190)	(566,600)	(5607,420)	(5720,000)	544,313	(55,49, 282)	(588,718)	S2,673	(\$11,759,515)	(5720,000)	\$44,313	(\$11,315,387)	(5752,768)	\$2,673
	(588,84) (5896,920)	($53,86,240$)	\$2,315,668	($52,536,332$)	($51,360,246$)	\$1,48,280	285	($52,058,490$)	(51,27, 800)	(5613,420)	($53,86,240$)	\$2,35,668	($55,493,282)$	($53,024,005$)	\$1,48,280	(s11,764,85)	($53,866,240$)	\$2,35,668	(\$13,315,37)	($52,009,502$)	\$1,478,280
Total Net Present value					S118,034									(51,545,726)		$\frac{(5531,223)}{0.7}$					
	Benefit l Cost Ratio				1.1									${ }^{0.5}$							

Planned / Managed Retreat (Purchase Private Property)						Accommodate Beach Nourishment								
Inputs			Discount Rate	3\% 3\%		Inputs						Discount Rate		
Adaptation Cost in Current Year (Nominal)	 Environmental Cost in Curent Year (Nominal)	$\begin{gathered} \text { Social \& } \\ \text { Environmental } \\ \text { Benefit in ucrrent } \\ \text { Year (Nominal) } \end{gathered}$	Cumulative (Nomindal)	Cost Present Value (Real)	Benefit Present Value (Real)	Nourishment	Adaptation Capital Cost in Current Year (Nominal)	Adaptation Maintenance Cost in Current Year (Nominal)	Economic Cost in Current YYar (Nominal)	Social \& Environmental Year (Nominal)	$\begin{aligned} & \text { Social \& } \\ & \text { Environmental } \\ & \text { Benefit in } \\ & \text { Current Year } \\ & \text { (Nominal) } \end{aligned}$	Cumulative (Nomindal)	Cost Present Value (Real)	Benefit Present Value (Real)
(55,300)	(557, 240)	\$405,080	(\$170,460)	(5575,540)	\$405,080		(5300)		(56,00)	(5570,24)	\$405,080	(s171,460)	(5576,540)	\$405,080
		\$407,105	\$236,645		\$351,173	3535	(5212,100$)$				\$407,105	\$23,545	(5182,959)	\$351,173
		S409, 141	S645,786		\$304,439	3588	(5215,250$)$	(\$10,005)			s409,141	\$200,831	(S168,057)	\$304,439
		\$411,187	\$1,056,973		\$263,925	3640	(5218,400)	(\$10,763)			\$411,187	\$388,855	(5147,091)	s263,925
		\$41,119	\$1,09,092		\$22,766	3693	(s22, 5 50)	(\$10,920)			\$413,243	\$569,628	(\$128,713)	\$228,802
		\$41,324	\$1,13,4,46		\$19,737	3745	(5224,700)	(\$11,078)			\$415,309	579,159	(\$112,609)	\$198,354
		\$41,531	\$1,18,947		\$17,110	3815	(5228,900)	(\$11,25)			\$447,385	s926,410	(598,932)	\$171,957
		\$41,739	\$1,22,885		\$14,833	3903	(5234,150$)$	(\$1, 4,45)			\$419,472	\$1,100,287	(887,280)	\$149,073
		\$41,947	\$1,264,633		\$12,859	3990	(5239,400)	(\$11,708)			\$421,570	\$1,270,749	(576,979)	\$129,235
	(52,56,000)	\$42,157	(59,269,211)	(5681,194)	\$11,148	4078	(524,650)	(\$11,970)			\$423,677	\$1,47,806	(567,860)	\$112,037
		\$42,368	(5, 226,843)		59,64	4165	(524,900)	(\$12,23)			\$211,839	\$1,37,513	(559,744)	S48,322
		\$42,580	(8, 184,263)		s8,378	4253	(8255,150$)$	(\$12,495)			\$212,898	\$1,32,766	(552,664)	\$41,891
		\$42,792	(8, 141,471)		57,263	4358	(5226,450)	(\$12,758)			\$213,962	\$1,272,521	(546,542)	936,317
		\$43,006	(81,098,464)		S6,297	4463	(5267,750)	(\$13,073)			\$215,032	\$1,206,730	(541,116)	S31,484
		\$43,221	(51.05,243)		55,459	4568	(s27,050)	(\$13,38)			\$216,107	\$1,13,400	(936,303)	\$27,294
		\$43,438	(8,0101,805)		54,732	4673	(5280,350)	(\$13,703)			\$227,188	\$1,05,536	(S32,036)	- ${ }_{22,662}$
		\$43,655	(9988, 150)		54,103	4778	(5286,650)	(\$14,018)			\$218,274	5976,142	(58,256)	\$20,513
		\$43,873	(9924,277)		${ }_{53,57}$	4865	(5221,900)	(\$14,333)			\$219,365	\$889,275	(524,825$)$	\$17,783
		\$44,092	(9880,185)		${ }^{53,083}$	4970	(5298,200)	(\$14,595)			\$43,773	\$620,353	(521,873)	\$3,068
	(5720,000)	S44,313	($521,31,3,387)$	($51,235,331)$	52,673	5075	(5304,500)	(\$14,90)		($52.57,000$)	\$44,092	(52,23,965)	(8174,652)	\$2,660
($19,7,74,815$)	($53,86,240$)	\$2,31,668	(521,31, 387)	($52,492,065$)	\$1,48,280	80,150	($54,809,300$)	(5225,225)	(56,00)	($53,14,240)$	\$5,95,800	($52,23,9665$)	($52,165,081)$) $52,567,088$
				(51,013,	3,785)									01,987
				0.6										1.2

Planned / Managed Retreat (includingPurchasing Private Property)						Protect Groynes								
Inputs			Discount Rate	3\% 3\%		Inputs						Discount Rate		
Adaptation Cost in Current Year (Nominal)	$\begin{aligned} & \text { Social \& } \\ & \text { Environmental Cost in } \\ & \text { Current Year } \\ & \text { (Nominal) } \end{aligned}$	$\begin{gathered} \text { Social \& } \\ \text { Environmental } \\ \text { Benefit in Current } \\ \text { Year (Nominal) } \end{gathered}$	$\begin{aligned} & \text { Cumulative Cashflow } \\ & \text { (Nomindal) } \end{aligned}$	Cost Present Value (Real) Real	Benefit Present Value (Real)	$\begin{gathered} \text { Groyne } \\ \text { Length (} m \text {) } \end{gathered}$	$\begin{aligned} & \text { Adaptation } \\ & \text { Capital Cost in } \\ & \text { Current Year } \\ & \text { (Nominal) } \end{aligned}$	$\begin{gathered} \text { Adaptation } \\ \text { Maintenance } \\ \text { Cost in Current } \\ \text { Year (Nominal) } \end{gathered}$	$\begin{gathered} \text { Economic } \\ \text { Cost in } \\ \text { Current Year } \\ \text { (Nominal) } \end{gathered}$	Social \& Environmental Cost in Curren Year (Nominal)	$\begin{gathered} \text { Social \& } \\ \text { Enviromental } \\ \text { Benefitinal } \\ \text { Curent Year } \\ \text { (Nominal) } \end{gathered}$	Cumulative (Nomindal	Cost Present Value (Real)	Benefit Present Value (Real)
(586,325)	(\$1, 551,600)	\$15,808,000	\$14,170,075	(81,67,925)	\$15,808,000	270	$\begin{array}{r} (\$ 23,450) \\ (\$ 4,05,000) \end{array}$			($51,551,600)$	$\begin{aligned} & \$ 15,808,000 \\ & \$ 15,887,040 \end{aligned}$		(52,039,330)	\$15,808,000 \$13,704,300
		\$15,887,040	933,057,115		\$13,704,300				(s59,200)			\$13,768,670 s29,50,710		
		\$15,966,475	\$46,023,590		\$11,880,557			$(5405,000)$$(5805,000)$			$\begin{aligned} & \$ 16,046,308 \end{aligned}$	S40,762,185S6,403,493	($53,314,938)$ (8252,954)	\$11,880,557 \$10,299,514
		\$16,046,308	\$62,069,988		\$10,299,514									
		\$16,126,539	878,196,437		s8,928,744			(5405,000)		(\$77,125,032	(5224,239)	
		\$16,207,172	\$994,403,609		\$7,740,366			(5405,000)				587,927,204	(5193,430$)$	\$7,740,366
		\$16,28, ,208	\$110,691,816		\$6,710.526			(5405,000)		($\begin{gathered}\$ 16,207,172 \\ \$ 16,288,208\end{gathered}$		\$103,810,411	(S166,855)	s6,710,526
		\$16,369,449	\$127,061,465		95,817,501			(5405,000)			\$16,369,449	\$119,775,060	(\$143,930)	$555,877,501$$\$ 5,043,319$
		\$16,451,497	\$143,512,962		95,043,319			(s405,000)			\$16,451,497	\$135,821,557		
	($813,247,100)$	\$16,533,754	\$136,978,396	(56,100,155)	\$4,372,163			(s405,000)			\$16,533,754			$\$ 5,043,39$ $\$ 4,372,163$
		\$16,616,423	\$153,594,820		¢3,790,324			(5405,000)		($56,890,40$)	\$16,616,423	\$161,271,335 \$177,565,840	(592,383)	\$3,790,324
		\$16,69, 505	\$170,294,325		\$3,285,914					(5324,000$)$	\$16,699,505			\$3,28,9914
		\$16,783,03	\$187,077,328		\$2,848,631		(\$4,050,00)				\$16,783,003		(${ }_{\text {(5871, } 1549 \text {) }}$	$\$ 2,848,631$$\$ 2,46,540$
		\$16,866,918	s203,944,246		\$2,469,540			(S405,000)			\$16,866,918	\$206,031,761	(559,297)	
		\$16,951,252	5220,895,498		\$2,14, ,998			(5405,000)			\$16,951,252	\$222,578,013	(\$51,150) $(\$ 44,123)$	\$2,140,898
		\$17,036,09	\$237,931,507		\$1,855,92			(5405,000)			\$17,036,009	\$239, 209,022 \$255,925,211		
		\$17,121,189	\$255,052,966		\$1,609,000			$(\$ 4050,000)$$(\$ 405,000)$			\$17,121,189		(s54,123) ${ }_{(588,061)}$	\$1,855,992 $\$ 1,009000$
		\$17,206,795	S272,259,490		\$1,34, 87						\$17,206,795	s272,727,005	(532,832)	$\begin{aligned} & \$ 1,394,877 \\ & \$ 1,209,249 \end{aligned}$
		\$17,292,829	5289,552,319		\$1,209,249			$(5405,000)$$(5405,000)$	(\$462,250)	($84,03,100$)	\$17,292,829	\$289,614,834 \$302,038,927	$\begin{gathered} (\$ 28,321) \\ (\$ 298,899) \end{gathered}$	
(s108,903,420)	(s821,700)	\$17,37, 293	\$197,206,492	(96,48,655)	\$1,08, ,235		(599,850)				\$17,379,293			\$1,209,299 \$1,04,325
(5118,810,965)	($515,62,400$)	\$331,637,857	\$197,200,492	(514,36,734)	\$111,95,140	270	($58,173,300)$	(58,100,000)	(552, 530)	($512,804,100)$	\$331,637,857	\$332,038,927	($110,281,285$)	\$111,95, 140
				597,601,406									\$101,677,855	
				(10.9	

Protect Headlands								
Inputs						Discount Rate		3\%
Headland Length (m)	Adaptation Capital Cost in Current Year (Nominal)	Adaptation Maintenane Cost in Curent Year (Nominal)	Economic Cost in Current Year (Nominal)	$\begin{gathered} \text { Social \& } \\ \text { Environmental } \\ \text { Cost in Current } \\ \text { Year (Nominal) } \end{gathered}$	$\begin{aligned} & \text { Social \& } \\ & \text { Enviromental } \\ & \text { Benefit ina } \\ & \text { Curent eqaar } \\ & \text { (Nominal) } \end{aligned}$	Cumulative (Nomindal	Cost Present Value (Real)	$\begin{gathered} \text { Benefit } \\ \text { Present Value } \\ \text { (Real) } \end{gathered}$
100	(523,450)		(559,280)	(81,51,600)	\$15,800,000	\$14,173,670	(\$1, 634,330)	\$15,800,000
	(52,30,000)				\$15,887,040	s27,760,710	(\$1, $1.84,000)$	\$13,704,300
		(5115,000)			\$15,966,475	\$43,612,185	(885,571)	\$11,880,557
200		(5115,000)			\$16,046,308	s59,543,493	(577.844)	\$10,299,514
	($54,600,000$)	(\$15,000)			\$16,126,539	570,955,032	(52.610,581)	s8,928,874
		(5345.000)			\$16,207,172	\$86,817,204	(s164,774)	\$7,74,636
		(5345,000)			\$16,288,208	\$102,780,411	(\$142,135)	\$6,70,526
100		(5345,000)			\$16,369,649	\$118,785,060	(\$122,607)	s5,817,501
	($52,300,000$)	(5345,000)			\$16,451,497	\$132,59,557	(5810,843)	\$5,04, 3,19
		(5460,000)		(56,89,400)	\$16,533,754	\$141,774,911	($51.943,730)$	\$4,372, 163
200	(55,750,00)	(S460,000)			\$16,616,423	\$152,181,335	(81,416,545)	\$3,790,324
		(5690,000)			\$16,699,505	\$168,190,840	(\$135,769)	\$3,28,914
		(5690,000)			\$16,783,003	\$184,283, 44	(S117,116)	\$2,848,631
	($52,300,000)$	(5690,000)			\$16,866,918	\$198,160,761	(5437,776)	\$2,469,540
		(5690,000)			\$16,951,252	\$214,422,013	(887,145)	\$2,140,988
		(5690,000)			\$17,036,009	5230,788,022	(575,172)	\$1,855,992
		(5690,000)			\$17,121,189	\$247, 199,211	(564,844)	\$1,609,00
	(51,150,00)	(5690,000)			\$17,206,795	\$262,566,005	(\$149,160)	\$1,394,877
		(5690,000)			\$17,292,829	\$279,168,834	(548,250)	\$1,209,249
	(s5,250,150)	(5690,000$)$	(5462,250)	($54.03,100$)	\$17,379,293	5289, 107,627	(5448,813)	\$1,08, ,325
600	($520,677,600$)	($58,85,000$)	(5521,530)	(\$12,480,100)	\$331,637,857	\$289, 07, 627	($112,552,977)$	\$111,958,140
							S99,405,163	
							8.9	

	Baseline - Do Nothing						Protect - Seawalls									Planned / Managed Retreat (Public Only)						
	Inputs			Discount Rate			Inputs						Discount Rate $\quad 3 \% \quad 3 \%$			Inputs			Discount Rate		-	
Year	Adaptation Coconomic Cost Cost in Current in Current Year Year (Nominal) (Nominal)	Social \& Environmental Cost Year (Norent Yeaninal)	$\begin{gathered} \text { Social \& } \\ \text { Enviromental } \\ \text { Benefit in } \\ \text { Current Year } \\ \text { (Nominal) } \end{gathered}$	Cumulative Cashflow (Nominal)	Cost Present Value (Real)	Benefit Present Value (Real)	Seawall Length (m)	Adaptation Capital Cost in Current Year (Nominal)	$\begin{aligned} & \text { Adaptation } \\ & \text { Maintenance } \\ & \text { Cost in Current } \\ & \text { Year (Nominal) } \end{aligned}$	Economic Cost in Current Year (Nominal)		$\begin{gathered} \text { Social \& } \\ \text { Enviranental } \\ \text { Beneffit ial } \\ \text { Current Rear } \\ \text { Noominal) } \end{gathered}$	Cumulative (Nominal)	Cost Present Value (Real)	Benefit Present Value (Real)	Adaptation Cost in Current Year (Nominal)			$\begin{aligned} & \text { Cumulitive } \\ & \text { (Cashlum } \\ & \text { (Nominal) } \end{aligned}$	Cost Present Value (Real)	Benefit Present Value (Real)	
2020	(549,470) (s 108,970)	(\$17,120,70)	\$19,760,000	\$2,40,860	(\$17,279,10)	\$19,760,00		(599,470)		(5108,970)	(817, 12, ,70)	\$19,760,00	\$2,480,860	(817,279,10)	\$19,760,00	(5189, 145)	(517,120,70)	\$19,760,000	S2,45,155	($517,309,845$	\$19,760,000	
2025			\$19,858,800	S22,33,660		\$17,130,375						\$19,858,800	S22,339,660		\$17,130,375			\$19,858,800	\$22,30,955		\$17,130,375	
2030			\$19,958,04	\$42,297,54		\$14,850,996	480	(53,60,000)			($52,496,000)$	\$19,958,04	\$36,201,754	(54,53,997)	\$14,850,996			\$19,958,094	\$42,267,049		\$14,850,966	
2035			\$20,057,844	S62,35,.338		\$12,87, ,393			(\$180,000)			\$22,057,844	\$56,079,638	(8115,535)	\$12,874,393			\$20,057,84	\$66,32, ,933		\$12,874,393	
2040			\$5,014,471	567,370,10		\$2,76,391	485	(93,67,500)	(5180,000$)$		(52, 26,000)	\$20,158,174	870,158,312	(53,36,072)	\$11,161,092			\$20,158,174	s82,483,107		\$11,161,092	
2045			\$5,039,543	\$72,409,653		\$2,00,914			(5361,875)			\$20,258,965	\$90,055,402	(\$172,834)	59,67,794			\$20,258,965	\$102,742,072		\$9,675,794	
2050			\$5,06,741	\$77,47, 394		\$2,08,606			(5361,875)			\$20,360,260	\$110,053,787	(5149,088)	¢8,38,157			\$20,360,260	\$123,102,332		s8,388,157	
2055			\$5,09,0,065	\$82,564,459		\$1,08,925			(5361,875)			\$20,462,061	\$130,153,973	(\$128,604)	\$7,27,877			\$20,462,061	\$143,564,393		\$7,271,877	
2060			\$5,115,515	S87,679,974		\$1,56, 196	395	(52.92,500)	(5361,875)		($52,054,000)$	\$20,564,371	\$145,339,969	($51.648,778)$	S6,30, 149			\$20,564,371	\$164,128,764		S6,304,149	
2065	(5477.610) ($54,98,021$)	(543,915,840)	\$5,14,093	543,430,968	(\$13,060,78)	\$1,35,504		(524,302)	(5510,000)	(81,28,498)	(S40, 43, 394)	\$20,667,193	\$123,516,304	(\$11,236,24)	55,46,204	(887,57, 640)	(539,380,40)	\$20,667,193	S57, 84, 9,97	(533,571,023)	\$5,465,204	
2070			\$5,16,798	\$48,597,34		\$1,17,583			(5510,000)			\$20,770.529	\$143,776,833	(\$116,355)	\$4,73,905			\$20,770.529	\$78,614,446		\$4,737,905	
2075			\$5,19, 632	\$55,790,027		\$1,02,740			(5510,000)			\$20,874,382	s164,44, ,214	(s100,351)	54,107,393			\$20,874,382	\$99,488,827		\$4,107,393	
2080			\$5,21,595	\$55,00,, 22		S885,788	1.090	(999,75,000)	(5510,000)		(55,68,000)	\$22,978,754	\$168,966,988	(52,74,699)	\$3,50,789			\$20,978,754	\$120,467,581		53,560,789	
2085			\$5,24,688	\$66,25, 3,30		5767,892			(9918,750)			S21,083,447	\$189,13, 885	(\$134,517)	\$3,88,925			S21,083,647	\$141,551,228		\$3,086,925	
2090			\$5,27,912	s66,524,222		\$665,702		(81, 88,750)	(5918,750)			\$21,189,066	\$207,583,431	(5345,739)	\$2.676, 123			\$22,189,066	\$162,740,294		\$2,676,123	
2095			\$5,29,7,26	574,821,489		S577,112			(s918,750)			\$21,295,011	5227,959,692	(s100,093)	\$2,39,989			\$21,295,011	\$184,035,305		\$2,319,989	
2100			\$5,32,753	\$88,145,241		\$500,311			(5918,750)			S21,401,486	\$228,442,428	(586,341)	\$2.01, 250			\$22,401,486	s205,436,791		s2,011,250	
2105			\$5,35,371	585,495,613		\$433,730			(5918,750)			S21,508,493	S229,032,171	(574,479)	\$1,74,596			\$21,508,493	S226,945,284		\$1,743,596	
2110			\$5,37, ,123	590,872,736		S376,010		(51,48,250)	(5918,750)			\$21,661,036	5288,248,207	(5167,827)	\$1,51,562			\$21,616,036	\$248,561,320		\$1,511,562	
2115	(5780,950) ($87,536,200)$	(542,272,40)	\$5,40,009	\$45,687,155	(33,01,580)	\$325,972		(5298,280)	(99918,50)	(81,49,400)	($331,052,240)$	\$21,724,116	S276,211,653	($52.036,454$)	\$1,30,406	(\$127,857,080)	$(535,42,400)$	\$21,724,116	s107,007,956	(59, 848,950)	\$1,310,406	
	(\$1,307,030) (\$12,643,191)	(5103,308,980)	\$162,946,356	\$45,687, 155	($533,391,469$)	\$88,354,820	2,450	($524,065,70$)	($510,278,750$)	($52,898,868)$	($5101,092,280)$	s414, 547,321	\$276,211,653	$\begin{array}{ll} (544,536,106) \\ \text { s95,41,569, } & \$ 139,97,675 \end{array}$		(5215,617,865)	(\$91,921,500)	S414,547,321	\$107,007,956	(560,729,818)	\$139,947,675	
	$\begin{aligned} & \text { Total Net Present Value } \\ & \text { Benefit / Cost Ratio } \end{aligned}$				549,963,352											\$79,217,857						
					2.5									${ }_{3}^{595,41,569}$							2.3	

Planned / Managed Retreat (Including Purchasing Private Property)						Protect Groynes								
Inputs			Discount Rate	3\% 3\%		Inputs						Discount Rate		
Adaptation Cost in Current Yea (Nominal)	Social \& Environmental Cost in Current Year (Nominal)	Social \& Environmental Benefit in Current Year (Nominal)	Cumulative Cashflow (Nominal)	Cost Present Value (Real)	Benefit Present Value (Real)	Groyne Length (m)	Adaptation Capital Cost in Current Year (Nominal)	Adaptation Montentince Conct intrent Year (Nominal)	Economic Cost in Current Year (Nominal)	$\begin{aligned} & \text { Social \& } \\ & \text { Environmental } \\ & \text { Cost in Current } \\ & \text { Year (Nominal) } \end{aligned}$		$\begin{gathered} \text { cumulitive } \\ \text { chastion } \\ \text { CNominal } \end{gathered}$	Cost Presen Value (Real)	$\begin{aligned} & \text { Benefit } \\ & \text { Present Value } \\ & \text { (Real) } \end{aligned}$
${ }^{(5189,145)}$	(\$17,120,70)	\$19,760,000	\$2,45,155	(\$17, 30, 845)	\$19,760,000		(549,470)		(5108,970)	(\$17,120,70)	\$19,760,000	\$2,48, 860	(1917,279, 140)	\$19,760,000
		\$19,858,800	\$22,308,955		\$17,130,375	240	(88,160,000)	(5408,000)		(9950,400)	\$19,858,800	\$12,821,260	(88,20,655)	\$17,130,375
		\$19,958,094	\$44,267,049		\$14,850,696			(5408,000)			\$19,95,09	S32,371,354	(8303, 590)	\$14,850,996
		\$20,057,884	966,324,933		\$12,874,393			(5408,000)			\$20,057,884	S52,021,238	(9266, 880)	\$12,874,393
		\$20,158,174	\$88,483,107		\$11,161,092	180	(56,120,000)	(5408,000)		(8712,800)	S20,158,174	S64,938,612	(84,09,055)	\$11,161,092
		\$20,258,965	\$102,742,072		59,65,794			(5774,000)			\$20,258,965	584,483,577	(\$341,010)	\$9,65,794
		\$20,360,260	\$123,102,332		\$8,38,157			(5774,000)			\$20,360,260	\$104, 129,837	(\$294,159)	\$8,38,157
		\$20,462,061	\$143,564,393		\$7,27, 877			(5774,000)			\$20,462,061	\$123,877,988	(9253,744)	\$7,27,877
		\$20,564,371	\$164,128,764		s6,30, ,49	240	(58,160,000)	(5774,000)		(s950,400)	\$20,564,371	\$134,617,869	(53,01, 737)	\$6,30, 149
	(539,380,40)	\$20,667,193	S57,843,917	($33,571,023$)	\$5,46, ,204			(51,122,00)		(53,27,900)	\$20,667,193	\$150,886,162	(85,163,239)	\$5,46, 204
(587,571.640)		\$20,770,529	\$78,614,446		\$4,73,905			($51,122,000)$			S20,770,52	\$170,534,691	(\$255,936)	\$4,73,905
		\$20,874,382	599,488,827		\$4,00, ,93		($54,080,000$)	(s1,122,000)		(9388,800)	\$20,874,382	\$185, 418,272	(81,100,086)	\$4,00, 393
		\$20,978,754	\$120,467,581		\$3,56,789			($51,122,000)$			\$20,978,754	\$205,675,026	(\$190,441)	\$3,50,789
		\$21,083,647	\$141,551,228		\$3,08,925			($51,122,000)$			521,083,647	\$225,636,673	(\$164,276)	\$3,08,925
		\$21,189,066	\$162,740,294		\$2,67, 123		(53,060,00)	(51,122,000)		(\$291, 600)	\$21,189,066	\$242,352,139	(5565,004)	\$2,676,123
		\$21,295,011	\$184,035,305		\$2,39,989			(51,122,00)			\$21,295,011	\$222,525,150	(\$122,237)	\$2,39,989
		\$21,401,486	\$205,436,791		\$2,01, 250			(51,122,000)			S21,401,486	\$282,804,636	(\$105,442)	\$2,01,250
		S21,508,493	\$226,945,284		\$1,74,596			(51,122,00)			S21,508,493	\$330,191,129	(590,955)	\$1,74, 7 ,96
		\$21,616,036	\$248,561,320		\$1,51,562		(54,080,000)	(51,122,00)		(5388,800)	\$21,616,036	\$319,216,365	(3390,052)	\$1,51,562
(5167,457,080)	($535,420,400$)	\$21,724,116	S67,407,956	(\$112,237,635)	\$1,30,406		$(55,860)$	(s1,122,00)	(88,501)	(\$17,093,60)	\$21,724,116	\$332,710,520	(81,09,637)	\$1,30,406
(\$255,217,865)	(591,921,500)	\$414,547,321	567,407,956	($563,118,503$)	\$139,947,675		(53,715,33)	(1916,330,000)	(s117,471)	(541,174,000)	\$414,547,321	\$322,710,520	($339,213,175$)	\$13,997,675
				576,829									\$100,734,	
				2.2									3.6	

Protect Headlands									Accommodate Beach Nourishment								
Inputs						Discount Rate 3%			Inputs						Discount Rate		
Headland Length (m)	Adaptation Capitat Cost in Current Year (Nominal)	Adaptation Maintenance Cost in curent Year (Nominal)	Economic Cost in Current Year (Nominal)	Social \& Environmental Year (Nominal) Year (Nominal)	$\begin{aligned} & \text { Social \& } \\ & \text { Environmental } \\ & \text { Benefit in } \\ & \text { Current Year } \\ & \text { (Nominal) } \end{aligned}$	Cumulitive cassiluw (Nomindala)	Cost Present Value (Real)	$\begin{gathered} \text { Benefit } \\ \text { Present Value } \\ \text { (Real) } \end{gathered}$	Nourishment Volume (m3)	Adaptation Capital Cost in Current Year (Nominal)	Adaptation Maintenance Cost in Current Year (Nominal)	Economic Cost in Current Year (Nominal)	Social \& Envionmental Cost in Current Year (Nominal)	$\begin{gathered} \text { Social \& } \\ \text { Environmental } \\ \text { Benefit in Current } \\ \text { Year (Nominal) } \end{gathered}$	Cumulative cassilow (Nomindal	Cost Present Value (Real)	Benefit Presen Value (Real)
100	(552,120)		(\$122,190)	(55,186,700)	\$21,143,200	\$15,782,190	(55,36,001)	\$21,143,200		(552, 120)		(\$122,190)	(55,18,700)	\$21,143,200	\$15,782,190	(55,361,010)	\$21,143,200
	(52,30,000)				\$21,248,916	934,731,106	(51,94,000)	\$18,329,502	1,375	(982,512)	(54,126)			S21,248,916	\$36,944,468	(574,734)	\$18,329,502
		(5115,000)			\$21,355,161	\$55,971,267	(885,571)	\$15,890,245	3,438	(5206,280)	(510,314)			S21,355,161	s55,083,035	(5161,166)	\$15,890,245
		(\$115,000)			\$21,461,936	\$77,318,203	(577,84)	\$13,775,600	5,501	(5330,048)	(516,502)			\$21,461,936	\$79,198,421	(5222,438)	\$13,775,600
200	(\$4,60,000)	(\$115,000)			\$21,569,246	\$99,172,449	(52.610,581)	\$11,942,369	7.564	(5453,816)	(522,691)			\$21,569,246	\$100,291,160	(5263,830)	\$11,942,369
		(5345.000$)$			\$21,677,092	\$115,504,541	(\$164,774)	\$10,353,100	9.626	(5577,584)	(528,879)			S21,677,092	\$121,361,789	(5889,650)	\$10,353,100
		(\$345,000)			\$21,785,478	\$136,945,019	(\$142, 135)	¢8,975,328	12,377	(5772,608)	(537, 130)			\$21,785,478	\$142,367,529	(5321,242)	s8,975,328
		(5345.000$)$			\$21,894,405	\$158,494,424	(\$122,607)	\$7,78,908	15,815	(5998,888)	(547, 444)			\$21,894,405	\$163,265,601	(5354,080)	\$7,780,908
200	($84.600,000$)	(5345,000)			\$22,003,877	\$175,55,301	(51.515,924)	56,745,439	19,253	($81,155,168)$	(557,758)			S22,003,877	\$184,056,552	(5377, ,331)	\$6,745,439
		(5575,000)		(8852,300)	\$22,113,897	\$196,239,988	(5377,433)	55,84,7,78	22.691	(1.1 .361 .488$)$	(968,072)		(\$14,842,040)	S22,113,897	\$189,98, 888	(54,302,829)	\$5,847,768
		(5575,000)			\$22,224,466	\$217,889,364	(\$131,162)	\$5,06, 558	26,129	(\$1,567,728)	(578,386)			S22,224,466	\$210,477,240	(5375,490)	\$5,009,558
	(81,15,000)	(5575,000)			\$22,33,588	s238,499,952	(5339,423)	\$4,394,911	29,567	($51,774,08)$	(588,700)			\$22,335,588	\$230,950,120	(5366,520)	\$4,394,911
400	($59,200,000$)	(5575,000)			\$22,447,266	\$251,172,219	(51,65, 141)	\$3,810,044	33,692	(s2,021,544)	(\$101,077)			S22,447,266	\$251,274,765	(5360,279)	\$3,810,044
		($51.035,000)$			\$22,59,503	S272.696,721	(\$151,538)	\$3,30,0,010	37,818	(s52,269,08)	(5113,454)			\$22,599.503	s271,451,734	(5348,835)	\$3,030,010
	($52,30,000$)	($51,035,000)$			\$22,672,300	s292,034,021	(5421,202)	\$2,863,452	41,944	(s2,516,616)	(\$125,831)			\$22,672,300	\$291,481,587	(5333,734)	\$2,863,452
		($51.03,0000)$			\$22,785,662	5313,784,683	(\$112,758)	\$2,482,389	46,069	(s2,764,152)	(\$138,208)			S22,785,662	\$311,364,889	(536, 198)	\$2,482,389
		($51,035,000)$			\$22,899,590	\$335,649,273	$(597,266)$	s2,152,037	50,195	(53,011,68)	(\$150,584)			S22,899,590	S331,102,207	(5297,181)	\$2,152,037
		($51,035,000)$			\$23,014,088	s357,628,361	(583,903)	\$1,865,488	53,633	($53,217,98)$	(\$160,888)			523,044,088	\$350,737,428	(5273,909)	\$1,865,648
	(52,300,00)	(51.03, 000)			523,129,158	\$377,42,519	(5233,209)	\$1,617,371	57,758	(53,465,504)	(1173,275)			\$23,129,158	\$370,227,807	(5254,452)	\$1,617,371
	(85,100)	($51,03,2,000$)	(55,500)	($88.000,800$)	\$23,244,804	5391,018,924	(5581,995)	\$1,402,134	61.884	($53,714,140)$	(\$188,652)	(55,500)	(523,867,060)	S23,244,804	\$365,700,260	(\$1,675,237)	\$1,402,134
900	($526,503,220$)	(\$11,270,000)	(\$127,600)	(\$14,645,800)	\$443,565,634	s391,018,924	(516,24, 446)	\$149,744,012	536,328	($532,232,900$)	($51,608,884$)	(\$127,600)	($543,895,800$)	\$443,565,634	\$365,700,260	($516,324,646$)	\$149,744,012
							\$133,494,5									\$133,41	19,366
							9.2									9.2	

	Baseline - Do Nothing						
	Inputs				Discount Rate 3%		
Year	Adaptation Cost in Current Year (Nominal)	Economic Cost in Current Year (Nominal)	 $\begin{array}{l}\text { Enivormental } \\ \text { Cost in Current } \\ \text { Year (Nominal) }\end{array}$	$\begin{gathered} \text { Social \& } \\ \text { Environenental } \\ \text { Benefitin } \\ \text { Current Year } \\ \text { (Nominal) } \end{gathered}$	Cumulative Cashflow (Nomindal)	Cost Presen Value (Real)	Benefit Present Value (Real)
2020	(54,040)	(514,040)	500)	88,55,080	87,12,400	\$1,43, 880)	58,556,880
2025				\$8,598,860	\$15,711,260		57,417.453
2030				\$8,64, 855	\$24,353,115		S6,430,351
2035				58,85,064	\$3,038,179		s5,57,612
2040				58,72,489	541,766,688		\$4,832,753
2045				58,72, 132	\$55,538,800		\$4,189,619
2050				\$8,81,992	\$55,354,793		53,632,072
2055				58,86,072	s66,214,865		53,14,723
2060				¢8,90, 373	\$77,119,238		\$2,72,969
2065	(529,830)	(51,02, 102)	(53,27, 880)	58,94,895	581,757,320	(51, 139, 945)	\$2,366,433
2070				58,93,639	s90,750,959		\$2,051,513
2075				ร9,03,607	S99,789,567		\$1,778,501
2080				\$4,59, 304	\$104,308,870		5767,075
2085				\$4,54,900	\$108,850,770		5664,994
2090				\$4,56,610	\$113,415,380		5576,498
2095				\$4,587,433	\$118,002,813		S499,779
2100				\$4,610,370	\$122,613,182		\$433,269
2105				\$4,63,422	\$127,246,604		\$375,611
2110				\$4,66,589	\$131,903,193		25,225
2115	(934,790)	(81,29, 552)	(57,04, 540)	\$4,67,872	\$128,21,183	(5504,995)	S282,291
	(568,66)	($52,308,694$)	($511,749,020)$	\$142,337,557	\$128,211,183	($53,088,620$)	S56,632,949
Total Net Present value						\$55,544,329	
Benefit C Cost Ratio						18.3	

Appendix B Adaptation Option Sketches

SEAWALL SECTION	YEAR BUILT／REBUILT	LENGTH（m）
1	2040	170
2	2080	190
3	2060	395
4	2030	480
5	2040	315
6	2080	900

LEGEND：
－—－－－－ 2015 COASTAL EROSION
－ー ー ー－－ 2065 COASTAL EROSION
－－－－－－ 2115 COASTAL EROSION
— NODE BOUNDARY

VEGETATION PROTECTED BY SEAWALLS

NOTE：
1．AERIAL PHOTOGRAPH PROVIDED BY CITY OF JOONDALUP TAKEN IN AUGUST 2020.

m p rogers \＆associates pl	Suite 1， 128 Main Street Osborne Park 6017 t：＋61892546600 Western Australia admin＠coastsandports．com．au	DRAWN	R BORJA	PINNAROO POINT TO HILLARYS（NODE 3）－SEAWALLS CITY OF JOONDALUP－COASTAL ADAPTATION PLAN	$\begin{aligned} & \text { SCALE } \\ & \text { AT A3 } \end{aligned}$		MARCH 2021
coastal and port engineers		CHECKED	T HUNT			1：10，000	SK1570－10－05A

GROYNE SECTION	YEAR BUILT／REBUILT	LENGTH（m）
1	2025	
2	2025	
3	2060	
4	2040	
5	2025	
6	2040	
7	2025	
8	2060	
9	2060	
10	2040	
11	2060	

LEGEND：
－ー－－－－ 2015 COASTAL EROSION
－ー ー ー ー－ 2065 COASTAL EROSION
－－－－－－ 2115 COASTAL EROSION

To
NODE BOUNDARY
GROYNES

NOTE：

1．AERIAL PHOTOGRAPH PROVIDED BY CITY OF JOONDALUP TAKEN IN AUGUST 2020.

m p rogers \＆associates pl	Suite 1， 128 Main Street Osborne Park 6017 t：＋61 892546600 Western Australia admin＠coastsandports．com．au	DRAWN	R BORJA	PINNAROO POINT TO HILLARYS（NODE 3）－GROYNES CITY OF JOONDALUP－COASTAL ADAPTATION PLAN	$\begin{gathered} \substack{\text { STALE } \\ \hline 1} \end{gathered}$		MARCH 2021
coastal and port engineers		CHECKED	T HUNT			1：10，000	SK1570-10-06A

HEADLAND SECTION	YEAR BUILT／REBUILT	LENGTH（m）
1	2060	
2	2025	
3	2025	100
4	2060	
5	2040	
6	2040	
7	2025	
8	2025	
9	2040	

HEADLAND SECTION	YEAR BUILT／REBUILT	LENGTH（m）
10	2025	
11	2025	
12	2040	100
13	2060	
14	2040	
15	2040	
16	2040	
17	2110	

LEGEND：
－－－－－－ 2015 COASTAL EROSION
＿－－－－－ 2065 COASTAL EROSION
－ー ー ー－－ 2115 COASTAL EROSION
NODE BOUNDARY
， HEADLANDS

NOTE：
1．AERIAL PHOTOGRAPH PROVIDED BY CITY OF JOONDALUP TAKEN IN AUGUST 2020.

m p rogers \＆associates pl	Suite 1， 128 Main Street	DRAWN	R BORJA	PINNAROO POINT TO HILLARYS（NODE 3）－HEADLANDS CITY OF JOONDALUP－COASTAL ADAPTATION PLAN			MARCH 2021
coastal and port engineers	Osborne Park 6017 Western Australia $\begin{gathered}\text { admin＠coastsandports．com．au }\end{gathered}$	CHECKED	T HUNT		${ }_{\text {AT A A }}^{\text {SCAIE }}$	1：10，000	SK1570－10－07A

m p rogers \& associates pl
www.coastsandports.com.au

